

Report No. : AI071608-01

AS/NZS EMI TEST REPORT

Equipment	: 360° All Around Webcam
Brand Name	: j5create
Model Name	: JVCU360, JVCU360S, JVCU361S, JVCU362S
Applicant	: KAIJET TECHNOLOGY INTERNATIONAL CORPORATION 8F., No.109, Zhongcheng Rd., Tucheng Dist., New Taipei City 236, Taiwan, R.O.C.
Manufacturer	: Magic Control Technology Corporation 10F., No.123, Zhongcheng Rd., Tucheng Dist., New Taipei City 236, Taiwan R.O.C.
Standard	: AS/NZS CISPR 32:2015 Class B

The product was received on Jul. 17, 2020, and testing was started from Jul. 20, 2020 and completed on Jul. 24, 2020. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in AS/NZS CISPR 32:2015 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: William Li

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

History of this test report	3
Summary of Test Result	4
1. General Description of Equipment under Test	5
1.1. Basic Description of Equipment under Test	
1.2. Feature of Equipment under Test	5
1.3. Table for Multiple Listing	
2. Test Configuration of Equipment under Test	6
2.1. Details of EUT Test Modes	
2.2. Description of Test System	
2.3. Connection Diagram of Test System	
2.4. Test Manner	
3. General Information of Test	10
3.1. Test Facilities	
3.2. Test Standards	
3.3. Test Voltage/Frequencies	
3.4. Test Distance and Frequency Range Investigated	
3.5. Operating Condition	
4. Conducted Emissions Measurement	11
4.1. Conducted Emissions at Powerline	
5. Radiated Emission	15
5.1. Radiated Emission below 1GHz	
5.2. Radiated Emission above 1GHz	
6. Uncertainty of Test Site	26
6.1. Emission Test Measurement Uncertainty	
7. List of Measuring Equipment Used	27
Appendix A. Test Photos	

Photographs of EUT v01

Report No.	Version	Description	Issued Date
AI071608-01	01	Initial issue of report	Sep. 04, 2020

History of this test report

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark			
4.1	A.3	Conducted Emissions of Powerline	PASS	Under limit 4.87 dB at 0.65 MHz			
-	A.3	Conducted Emissions of telecommunication Ports	Not Applicable	Note 1			
5.1	A.2	Radiated Emissions below 1GHz	PASS	Under limit 4.75 dB at 178.260 MHz			
5.2 A.2 Radiated Emissions above 1GHz PASS Under limit 25.15 dB at 5.915 GHz							
Note 1: This EUT without telecommunication ports, it's not necessary to apply to Telecom Port Conducted emission test. Note 2: From Sporton Project No.:AI071608.							

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and explanations:

None

Reviewed by: Andrew Yang

Report Producer: Michelle Tsai

1. General Description of Equipment under Test

1.1. Basic Description of Equipment under Test

Equipment	:	360° All Around WEBCAM		
Model No.	:	JVCU360, JVCU360S, JVCU361S, JVCU362S		
Power Supply Type	:	From Host system		
The maximum operating frequency : 480MHz				

1.2. Feature of Equipment under Test

For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Table for Multiple Listing

Model Name	Description		
JVCU360			
JVCU360S	The difference of models is in color marketing		
JVCU361S	The difference of models is in sales marketing.		
JVCU362S			

Note: The information from manufacturer.

2. Test Configuration of Equipment under Test

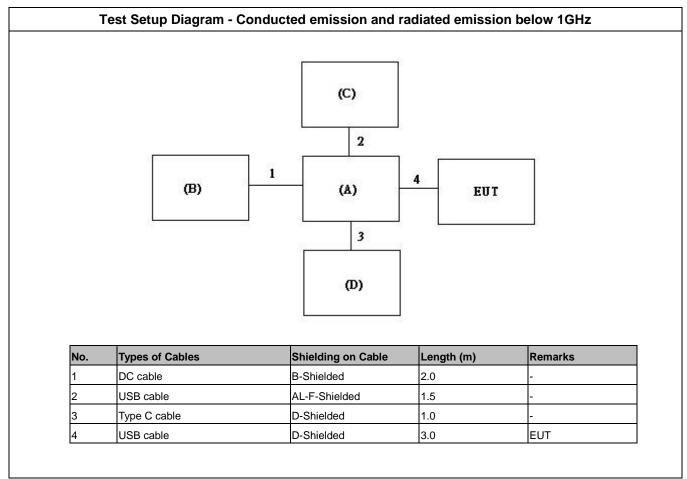
2.1. Details of EUT Test Modes

From the above models, Model: JVCU360S was selected as representative model for the test and its data was recorded in this report. The equipment under test were performed the following test modes:

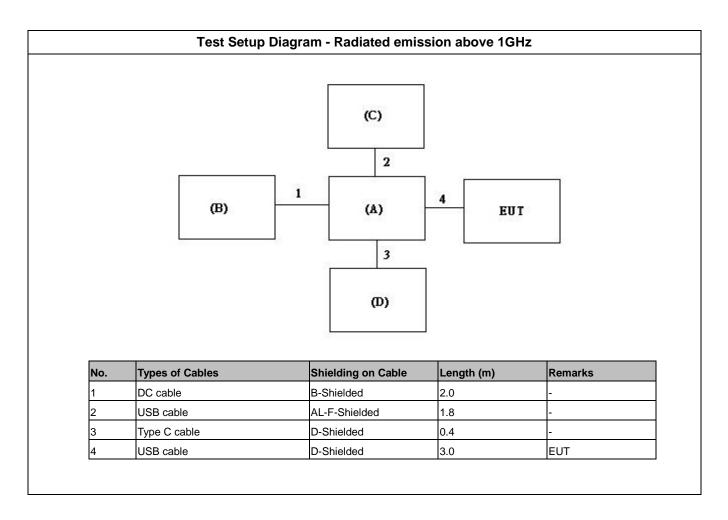
Test Items	Description of test modes
Conducted Emission	Mode 1. TYPE A,SYSTEM ON Mode 2. TYPE C,SYSTEM ON cause "mode 1" generated the worst test result; it was reported as final data.
Radiated	Mode 1. TYPE A, SYSTEM ON
Emissions	Mode 2. TYPE C,SYSTEM ON
<below 1ghz=""></below>	cause "mode 1" generated the worst test result; it was reported as final data.
Radiated Emissions <above 1ghz=""></above>	Mode 1. TYPE A, SYSTEM ON

2.2. Description of Test System

Conducted emission and radiated emission below 1GHz


No.	Peripheral	Manufacturer	Model Number	FCC ID	Remarks
For I	_ocal				
А	Notebook	DELL	P54G	DoC	-
В	Notebook Adapter	DELL	LA45NM131	DoC	-
С	Mouse	ASUS	MOBTUO	DoC	-
D	Portable External HDD	AKITION	SK2-U31AS-AKT	DoC	-

Radiated emission above 1GHz


No.	Peripheral	Manufacturer	Model Number	FCC ID	Remarks
For	Local				
А	Notebook	DELL	P54G	DoC	-
в	Notebook Adapter	DELL	LA45NM131	DoC	-
С	Mouse	Microsoft	1113	DoC	-
D	Portable External HDD	AKITION	SK2-U31AS-AKT	DoC	-

2.3. Connection Diagram of Test System

2.4. Test Manner

An executive program, "EMIprogram.exe" under WIN 10 was used as the test software. The program was executed as follows:

- Turn on the power of all equipment.
- The Notebook executed "1729 MPEG4" to keep displaying the Standard television color bar signal (ITU-R BT 1729).
- The Notebook executed "BurnInTest" to read and write data from HDD.
- The Notebook executed "camera" to preview the image by EUT.
- The Notebook executed "voice recorder" to record the audio signal via mic by EUT.

3. General Information of Test

3.1. Test Facilities

Tes	Test Site : SPORTON INTERNATIONAL INC.							
\boxtimes	HUA YA	ADD	D : No. 5	: No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)				
		TEL	: 886-3	3-327-3456	FAX : 8	386-3-318-0055		
\boxtimes	DONG HU	ADD	D : No. 3	3, Ln. 238, Kan	igle St., Neihu E	Dist., Taipei City,	Taiwan (R.O.C.)
		TEL	: 886-2	2-2631-5551	FAX : 8	386-2-2631-974	C	
	LIN KOU	ADD	D : No. 3	80-2, Dingfu Vi	I., Linkou Dist.,	New Taipei City,	Taiwan (R.O.C.)
		TEL	: 886-2	2-2601-1640	FAX : 8	386-2-2601-169	5	
		Test Site		Test	Test Environment			
	Test Items		No.	Engineer	temp °C	humidity %	Test Date	Remark
	erline Conducted		CO01-NH	Willy Lee	26.1~26.3	51.6~51.8	20/Jul/2020	-
	ated Emissions w 1GHz)		OS03-NH	Louis Lin	30.1~30.3	54.2~54.3	20/Jul/2020	-
	ated Emissions ve 1GHz)		03CH04-HY	Yen-Liang Ou	26.5~27.5	57~58	24/Jul/2020	-

3.2. Test Standards

Test items	Test Standards and Test Procedures
Radiated and Conducted	Australian Standard AS/NZS CISPR 32 Class B
Emissions	

3.3. Test Voltage/Frequencies

Power Supply Type	Voltage/Frequencies
AC Power Supply	240V / 50Hz

3.4. Test Distance and Frequency Range Investigated

Test Items	Frequency Range	Remark
Powerline Conducted Emissions	150 kHz to 30 MHz	-
Radiated Emissions (below 1GHz)	30 MHz to 1,000 MHz	Measurement distance is 10 m.
Radiated Emissions (above 1GHz)	1,000 MHz to 6,000 MHz	Measurement distance is 3 m.

3.5. Operating Condition

• Full system.

4. Conducted Emissions Measurement

The EUT is which satisfies the Class B disturbance limits.

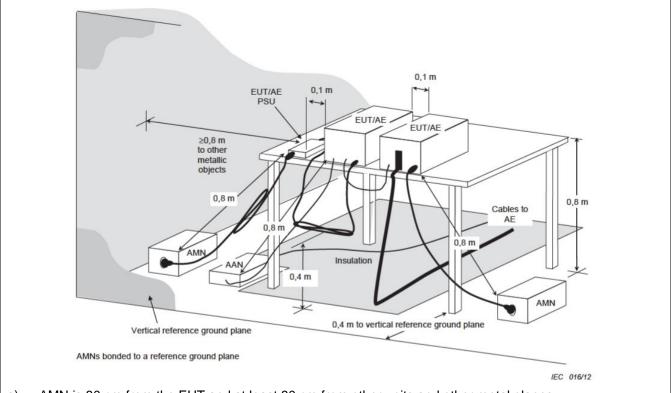
4.1. Conducted Emissions at Powerline

4.1.1.Limit

conducted emissions from the AC mains power ports of Class A equipment										
Frequency range MHz	Coupling device	Coupling device Detector type / bandwidth								
0,15 – 0,5	AMN	Quesi peck / 0 kHz	79							
0,50 – 30	Alvin	Quasi-peak / 9 kHz	73							
0,15 – 0,5	ΔΝΛΝΙ		66							
0,50 – 30	AMN	Average / 9 kHz	60							

conducted emissions from the AC mains power ports of Class B equipment									
Frequency range MHz	Coupling device	Coupling device Detector type / bandwidth							
0,15 – 0,5			66 - 56						
0,5 – 5	AMN	Quasi-peak / 9 kHz	56						
5 – 30			60						
0,15 – 0,5			56 - 46						
0,5 – 5	AMN	Average / 9 kHz	46						
5 – 30			50						
Note: The limit decreases	linearly with the logarithm of	the frequency in the range 0.	15 MHz to 0.50 MHz.						

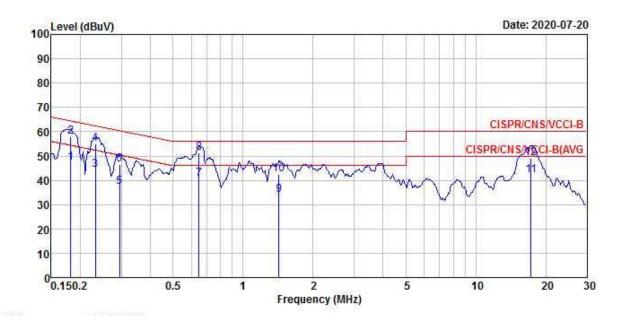
4.1.2. Test Procedures


- a). The EUT was warmed up for 15 minutes before testing started.
- b). The EUT was placed on a desk 0.8 meter height from the metal ground plane and 0.4 meter from the conducting wall of the shielding room and it was kept at least 0.8 meter from any other grounded conducting surface.
- c). Connect EUT to the power mains through a line impedance stabilization network (LISN).
- d). All the support units are connect to the other LISN.
- e). The LISN provides 50 ohm, coupling impedance for the measuring instrument.
- f). The CISPR states that a 50 ohm, 50 microhenry LISN should be used.
- g). Both sides of AC line were checked for maximum conducted interference.
- h). The frequency range from 150 kHz to 30 MHz was searched.
- i). Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- j). All emissions not reported here are more than 10 dB below the prescribed limit.

4.1.3. Measurement Results Calculation

The measurand Level is calculated using: Corrected Reading (dB μ V) = LISN Factor + Cable Loss + Read Level For example at 0.3 MHz if the LISN Factor is 10.48 dB, the cable loss is 0.10 dB, the measured voltage is 36.39 dB μ V, the signal strength would be calculated: Corrected Reading (dB μ V) = 10.48 dB + 0.10 dB + 36.39 dB μ V = 46.97 dB μ V

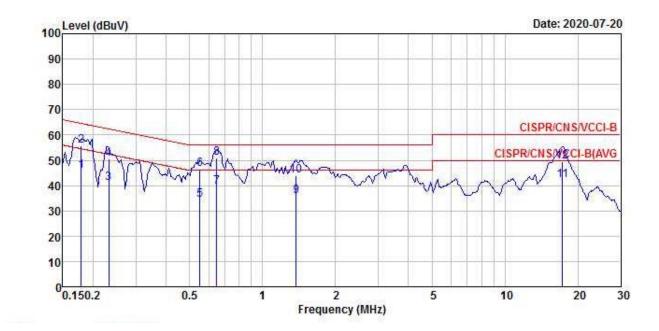
4.1.4. Typical Test Setup Layout


- a). AMN is 80 cm from the EUT and at least 80 cm from other units and other metal planes.
- b). EUT is connected to one artificial mains network (AMN)
- c). All other units of a system are powered from a second AMN. A multiple outlet strip can be used for multiple mains cords.
- d). Rear of EUT to be flushed with rear of table top.
- e). Peripherals shall be placed at a distance of 10 cm from each other and from the controller, except for the monitor which, if this is an acceptable installation practice, shall be placed directly on the top of the controller.
- f). If cables, which hang closer than 40 cm to the horizontal metal ground plane, cannot be shortened to appropriate length, the excess shall be folded back and forth forming a bundle 30 cm to 40 cm long.
- g). Mains cords and signal cables shall be positioned for their entire lengths, as far as possible, at 40 cm from the vertical reference plane.
- h). Cables of hand operated devices, such as keyboards, mice, etc. shall be placed as for normal usage.

4.1.5.Test Result

Test Mode	Mode 1							
Test Frequency	0.15 MHz ~ 30 MHz	Test Voltage	AC 240V / 50Hz					
The test was passed at the minimum margin that marked by the frame in the following data								

Line



	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
-	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.18	47.38	-7.02	54.40	36.97	10.30	0.11	Average
2	0.18	57.93	-6.47	64.40	47.52	10.30	0.11	QP
2 3 4	0.23	44.43	-7.96	52.39	34.02	10.30	0.11	Average
4	0.23	55.09	-7.30	62.39	44.68	10.30	0.11	QP
5	0.30	37.35	-13.02	50.37	26.95	10.30	0.10	Average
6	0.30	46.61	-13.76	60.37	36.21	10.30	0.10	QP
7	0.65	40.46	-5.54	46.00	30.05	10.31	0.10	Average
8 @	0.65	51.13	-4.87	56.00	40.72	10.31	0.10	QP
9	1.43	34.03	-11.97	46.00	23.60	10.32	0.11	Average
10	1.43	42.38	-13.62	56.00	31.95	10.32	0.11	QP
11	17.29	42.06	-7.94	50.00	31.01	10.60	0.45	Average
12	17.29	49.07	-10.93	60.00	38.02	10.60	0.45	QP

TEL : 886-3-327-3456 FAX : 886-3-327-0973 Report Template No.: HE3-T5 Ver2.1

Neutral

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.18	45.70	-8.85	54.55	35.29	10.30	0.11	Average
2	0.18	55.62	-8.93	64.55	45.21	10.30	0.11	QP
23	0.23	40.79	-11.60	52.39	30.38	10.30	0.11	Average
4	0.23	50.42	-11.97	62.39	40.01	10.30	0.11	QP
5	0.55	34.37	-11.63	46.00	23.96	10.31	0.10	Average
67	0.55	46.36	-9.64	56.00	35.95	10.31	0.10	QP
7	0.65	39.38	-6.62	46.00	28.96	10.32	0.10	Average
8 @	0.65	50.79	-5.21	56.00	40.37	10.32	0.10	QP
9	1.37	35.72	-10.28	46.00	25.29	10.33	0.10	Average
10	1.37	44.04	-11.96	56.00	33.61	10.33	0.10	QP
11	17.29	42.24	-7.76	50.00	31.14	10.65	0.45	Average
12	17.29	49.44	-10.56	60.00	38.34	10.65	0.45	QP

5. Radiated Emission

The EUT is which satisfies the Class B disturbance limits.

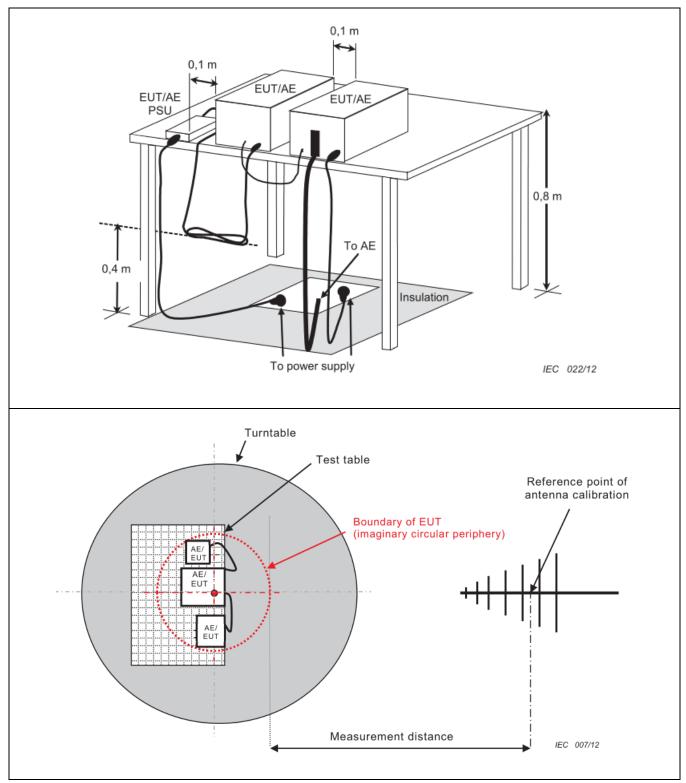
5.1. Radiated Emission below 1GHz

5.1.1.Limit

radiated emissions at frequencies up to 1 GHz for Class A equipment									
Eroqueney renge	Ме	asurement	Class A limits dB(µV/m)						
Frequency range MHz	Distance (m)	Detector type / bandwidth	OATS/SAC						
30 – 230	10		40						
230 – 1000	10	Quasi Peak /	47						
30 – 230	3	120 kHz	50						
230 – 1000	3		57						

radiated emissions at frequencies up to 1 GHz for Class B equipment										
Eroquonov rongo	Me	asurement	Class B limits dB(µV/m)							
Frequency range MHz	Distance (m)	Detector type / bandwidth	OATS/SAC							
30 – 230	10		30							
230 – 1000	10	Quasi Peak /	37							
30 – 230	2	120 kHz	40							
230 – 1000	3		47							

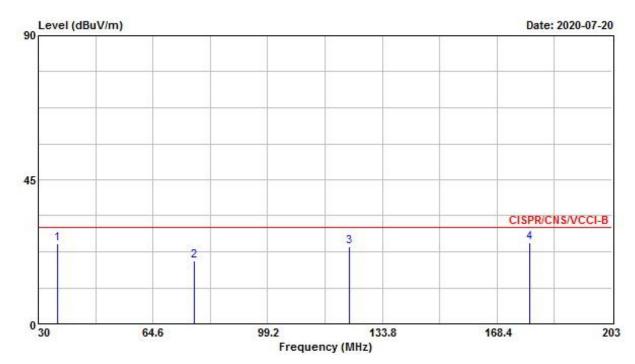
5.1.2.Test Procedures


- a). The EUT was placed on a rotatable table top 0.8 meter above ground.
- b). The EUT was set 10 meters from the interference-receiving antenna which was mounted on the top of a variable height antenna tower.
- c). The table was rotated 360 degrees to determine the position of the highest radiation.
- d). The antenna is a half wave dipole and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e). For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f). Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g). If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- h). The central point of the EUT shall be positioned at the centre of the turntable. The measurement distance is the shortest horizontal distance between an imaginary circular periphery just encompassing this arrangement and the calibration point of the antenna.

5.1.3. Measurement Results Calculation

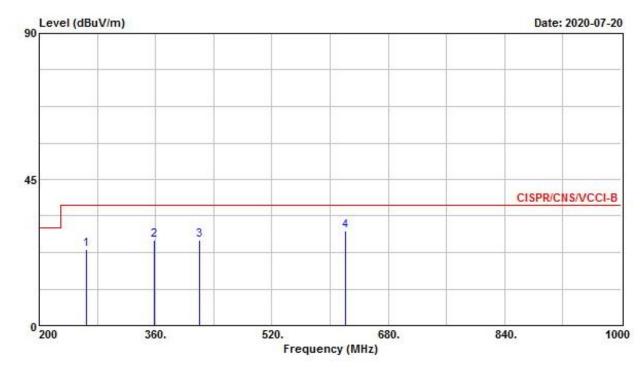
```
The measurand Level is calculated using:
Corrected Reading (dB_{\mu}V/m) = Antenna Factor + Cable Loss + Read Level – Preamp Factor
For example at 125 MHz if the Antenna Factor is 17.24 dB/m, the cable loss is 1.20 dB, the measured voltage is
35.80 dB<sub>µ</sub>V and the Preamp Factor is 27.18 dB, the signal strength would be calculated:
Corrected Reading (dB_{\mu}V/m) = 17.24 dB/m + 1.20 dB + 35.80 dB<sub>µ</sub>V - 27.18 dB = 27.06 dB<sub>µ</sub>V/m
Note: If a hybrid antenna is used, the antenna factor shell be the sum of the Antenna Factor + Attenuator Factor.
```


5.1.4. Typical Test Setup Layout

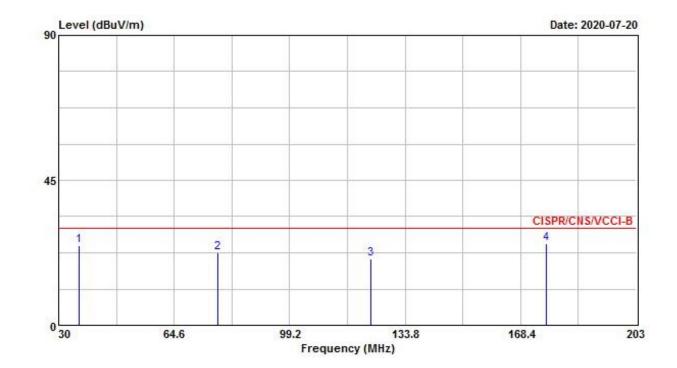

TEL : 886-3-327-3456 FAX : 886-3-327-0973 Report Template No.: HE3-T5 Ver2.1 Page Number:17 of 28Issued Date:Sep. 04, 2020Report Version:01

5.1.5. Test Result

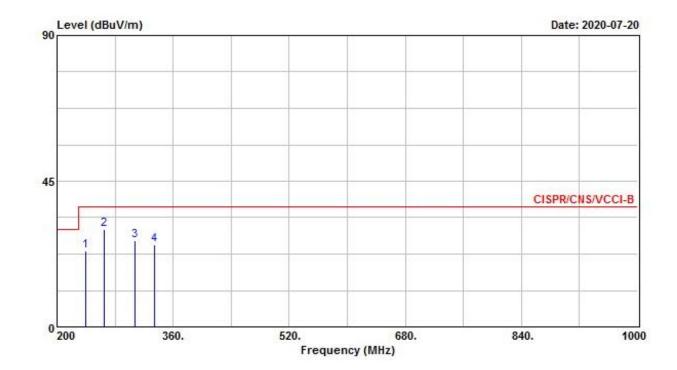
Test mode	Mode 1							
Test frequency	30 MHz ~ 1000 MHz Test Voltage AC 240V / 50Hz							
■ The test was passed at the minimum margin that marked by the frame in the following data								


Vertical

		Freq	Freq	Freq	Level	Over Limit			Antenna Factor		그는 것 한		Ant Pos	Table Pos
	92	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB			deg		
1	e	35.880	24.97	-5.03	30.00	32.03	19.69	1.12	27.87	Peak				
2		77.060	19.54	-10.46	30.00	34.14	11.63	1.65	27.88	Peak				
3	6	123.770	23.97	-6.03	30.00	32.23	17.43	2.06	27.75	Peak				
4	0	178.260	25.25	-4.75	30.00	35.84	14.43	2.49	27.51	QP	100	177		


Vertical

				Over	Limit	Read	Antenna	Cable	Preamp		Ant	Table
	F	req	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	-	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB			deg
1	265.	600	23.47	-13.53	37.00	29.26	18.16	3.26	27.21	Peak		
2	358.	400	26.25	-10.75	37.00	30.44	19.63	3.72	27.54	Peak		
3	420.	800	26.18	-10.82	37.00	28.49	21.76	3.93	28.00	Peak		
4	620.	800	29.06	-7.94	37.00	28.33	23.77	5.50	28.54	Peak		


Horizontal

				Over	Limit	Read	Antenna	Cable	Preamp		Ant	Table
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	(cm	deg
1	e	36.060	24.62	-5.38	30.00	31.68	19.69	1.12	27.87	Peak		
2		77.750	22.42	-7.58	30.00	37.02	11.63	1.65	27.88	Peak		
3		123.590	20.52	-9.48	30.00	28.69	17.54	2.05	27.76	Peak		
4	e	176.190	25.24	-4.76	30.00	35.86	14.42	2.48	27.52	Peak		

Horizontal

		Over	Limit	Read	Antenna	Cable	Preamp		Ant	Table
Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB			deg
240.000	23.52	-13.48	37.00	31.33	16.30	3.12	27.23	Peak		
265.600	30.09	-6.91	37.00	35.88	18.16	3.26	27.21	Peak		
308.000	26.50	-10.50	37.00	31.80	18.53	3.45	27.28	Peak		
333.600	25.45	-11.55	37.00	30.37	18.87	3.60	27.39	Peak		
	MHz 240.000 265.600 308.000	MHz dBuV/m 240.000 23.52 265.600 30.09 308.000 26.50	Freq Level Limit MHz dBuV/m dB 240.000 23.52 -13.48 265.600 30.09 -6.91 308.000 26.50 -10.50	Freq Level Limit Line MHz dBuV/m dB dBuV/m 240.000 23.52 -13.48 37.00 265.600 30.09 -6.91 37.00 308.000 26.50 -10.50 37.00	Freq Level Limit Line Level MHz dBuV/m dB dBuV/m dBuV/m dBuV/m 240.000 23.52 -13.48 37.00 31.33 265.600 30.09 -6.91 37.00 35.88 308.000 26.50 -10.50 37.00 31.80	Freq Level Limit Line Level Factor MHz dBuV/m dB dBuV/m dBuV/m dB/m 240.000 23.52 -13.48 37.00 31.33 16.30 265.600 30.09 -6.91 37.00 35.88 18.16 308.000 26.50 -10.50 37.00 31.80 18.53	Freq Level Limit Line Level Factor Loss MHz dBuV/m dB dBuV/m dB dBuV/m dB/m dB 240.000 23.52 -13.48 37.00 31.33 16.30 3.12 265.600 30.09 -6.91 37.00 35.88 18.16 3.26 308.000 26.50 -10.50 37.00 31.80 18.53 3.45	Freq Level Line Level Factor Loss Factor MHz dBuV/m dB dBuV/m dBuV/m dB/m dB dB dB 240.000 23.52 -13.48 37.00 31.33 16.30 3.12 27.23 265.600 30.09 -6.91 37.00 35.88 18.16 3.26 27.21 308.000 26.50 -10.50 37.00 31.80 18.53 3.45 27.28	Freq Level Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dB dB/m dB dB 240.000 23.52 -13.48 37.00 31.33 16.30 3.12 27.23 Peak 265.600 30.09 -6.91 37.00 35.88 18.16 3.26 27.21 Peak 308.000 26.50 -10.50 37.00 31.80 18.53 3.45 27.28 Peak	Freq Level Line Level Factor Loss Factor Remark Pos MHz dBuV/m dB dBuV/m dB dBuV dB dB cm cm 240.000 23.52 -13.48 37.00 31.33 16.30 3.12 27.23 Peak 265.600 30.09 -6.91 37.00 35.88 18.16 3.26 27.21 Peak 308.000 26.50 -10.50 37.00 31.80 18.53 3.45 27.28 Peak

5.2. Radiated Emission above 1GHz

5.2.1.Limit

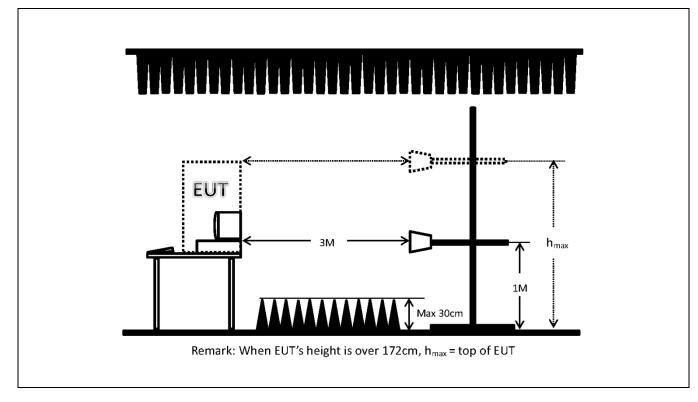
radiated emissions at frequencies above 1 GHz for Class A equipment								
	Me	asurement	Class A limits dB(µV/m)					
Frequency range MHz	Distance (m)	Detector type / bandwidth	SAC					
1000 – 3000			56					
3000 - 6000	3	Average / 1 MHz	60					
1000 – 3000	3	Peak / 1 MHz	76					
3000 - 6000			80					

radiated emissions at frequencies above 1 GHz for Class B equipment								
Eroqueney renge	Me	easurement	Class B limits dB(µV/m)					
Frequency range MHz	Distance (m)	Detector type / bandwidth	SAC					
1000 – 3000		Average / 1 MHz	50					
3000 - 6000	3	Average / 1 MHz	54					
1000 – 3000	3	Peak / 1 MHz	70					
3000 – 6000		Feak / 1 MHz	74					

Required highest frequency for radiated measurement							
Highest internal frequency	Highest measured frequency						
(<i>F</i> _x)							
$F_{\rm x} \le 108 \text{ MHz}$	1 GHz						
108 MHz < <i>F</i> _x ≤ 500 MHz	2 GHz						
500 MHz < <i>F</i> _x ≤ 1 GHz	5 GHz						
<i>F</i> _x > 1 GHz	5 x F_x up to a maximum of 6 GHz						

5.2.2. Test Procedures

- a). Same test set up as below 1GHz radiated testing.
- b). The EUT was set 3 meter from the interference-receiving antenna which was mounted on the top of a variable height antenna tower.
- c). There should be absorber placed between the EUT and Antenna and its located size should let the test site meet CISPR16-1-4 requirement.
- d). The table was rotated 360 degrees to determine the position of the highest radiation.
- e). The measured using a test-receiver system with both a peak and CISPR average detector.
- f). Set the DRG Horn Antenna at 1M height, then run the turn table to get the maximum noise reading from Horizontal and Vertical polarity separately.t the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g). When EUT locating on the turn-table, and its height is over 172cm (Antenna's 3dB beam width of 6GHz is 27°), the DRG Horn Antenna must be raised up and descended down, then turning around the turn-table to get the maximum noise reading of the Horizontal and Vertical polarity separately. Note the maximum raise up height is same as the top of EUT.
- h). If emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- i). The central point of the EUT shall be positioned at the centre of the turntable. The measurement distance is the shortest horizontal distance between an imaginary circular periphery just encompassing this arrangement and the calibration point of the antenna.

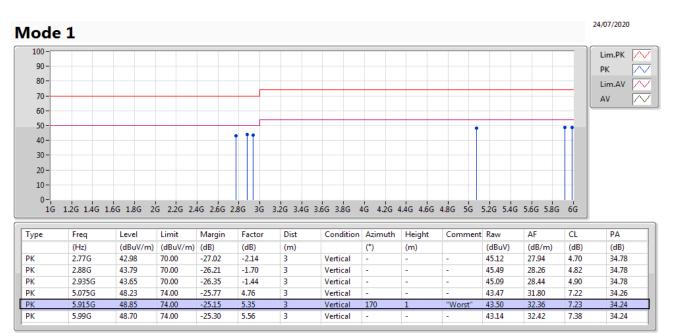


5.2.3. Measurement Results Calculation

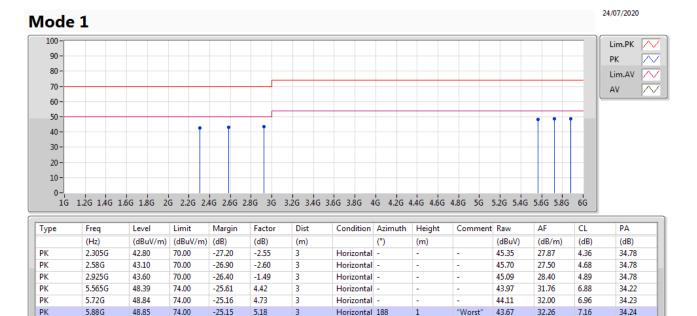
The measurand Level is calculated using:

Corrected Reading (dB μ V/m) = Raw(Read Level)+AF(Antenna Factor)+CL(Cable Loss)-PA(Preamp Factor) For example at 1980 MHz if the Antenna Factor is 26.19 dB/m, the cable loss is 4.08 dB, the measured voltage is 51.30 dB μ V and the Preamp Factor is 33.34 dB, the signal strength would be calculated: Corrected Reading (dB μ V/m) = 51.30 dB μ V + 26.19 dB/m + 4.08 dB + - 33.34 dB = 48.23 dB μ V/m

5.2.4. Typical Test Setup Layout



5.2.5. Test Result


Test mode	Mode 1					
Test frequency	1 GHz ~ 6 GHz	Test Voltage	AC 240V / 50Hz			
■ The test was passed at the minimum margin that marked by the frame in the following data						

Vertical

Horizontal

6. Uncertainty of Test Site

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2).

6.1. Emission Test Measurement Uncertainty

Test Items	Test Site No.	ULAB	
Conducted Emissions	CO01-NH	2.7 dB	
Radiated Emissions below 1GHz	OS03-NH	5.9 dB	
Radiated Emissions above 1GHz	03CH04-HY	6.47 dB	

7. List of Measuring Equipment Used

Conducted Emission - Test Date: 20/Jul/2020

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Receiver	R&S ESR3		102318	9K Hz – 3.6 GHz	30/Jul/2019	Conduction (CO01-NH)
LISN	SCHAFFNER	NNB41	06/10024	9kHz - 30MHz	27/Dec/2019	Conduction (CO01-NH)
Power Filter	CORCOM	MR12030	N/A	30A*2	NCR	Conduction (CO01-NH)
RF Cable-CON	Suhner Switzerland	RG223/U	CB004	9kHz - 30MHz	26/Dec/2019	Conduction (CO01-NH)
software	Audix	E3	6.12160806	-	NCR	Conduction (CO01-NH)

Note: Calibration Interval of instruments listed above is one year. NCR: No Calibration Request.

Radiated Emission below 1GHz - Test Date: 20/Jul/2020

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Open Area Test Site	SPORTON	OATS-10	OS03-NH	30 MHz - 1 GHz 10m, 3m	22/Oct/2019	Radiation (OS03-NH)
Amplifier	HP	8447D	2944A08292	0.1 MHz - 1.3 GHz	0.1 MHz - 1.3 GHz 03/Jul/2020	
Spectrum Analyzer	R&S	FSP7	838858/038	9 kHz – 7GHz	27/Apr/2020	Radiation (OS03-NH)
Receiver	R&S	ESCS30	838251/002	9 kHz –2.75 GHz	13/Jul/2020	Radiation (OS03-NH)
Bilog Antenna With 5dB Attenuator	CHASE	CBL6112D	25234	30 MHz - 2 GHz	26/Apr/2020	Radiation (OS03-NH)
Turn Table	EMCO	2080	9805-2065	0 - 360 degree	NCR	Radiation (OS03-NH)
Antenna Mast	EMCO	2075	9804-2151	1 m - 4 m	NCR	Radiation (OS03-NH)
RF Cable-R10m	HSCN	RG213U	2X11N	30 MHz - 1 GHz	17/Jul/2020	Radiation (OS03-NH)
Software	Audix	E3	Ver.4	-	NCR	Radiation (OS03-NH)

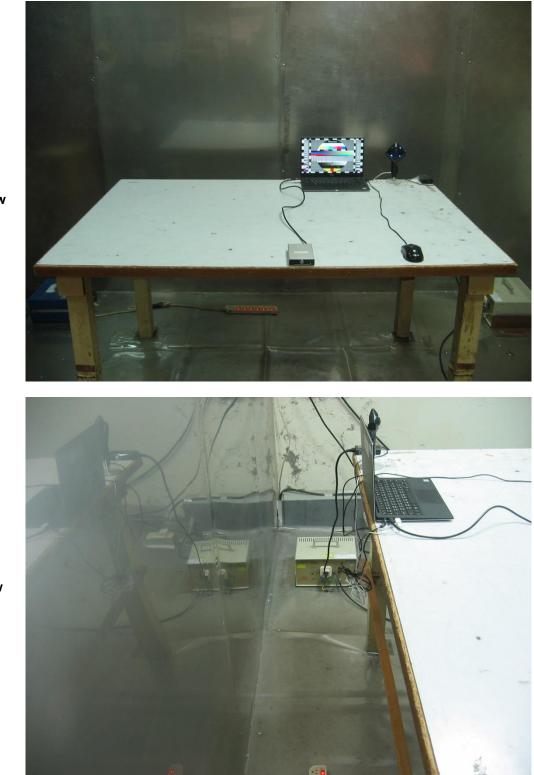
Note: Calibration Interval of instruments listed above is one year. NCR: No Calibration Request.

AS/NZS EMI TEST REPORT

Report No. : AI071608-01

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
EMI Test Receiver	R&S	ESU-26	100422	20Hz ~ 26.5GHz	23/Oct/2019	22/Oct/2020	Radiation (03CH04-HY)
3m Semi Anechoic Chamber (Site V.S.W.R)	RIKEN	3m SAC	03CH04-HY	1 GHz ~ 18 GHz 3m	27/Feb/2020	26/Feb/2021	Radiation (03CH04-HY)
Microwave Preamplifier	Agilent	8449B	3008A02602	1GHz~26.5GHz	20/Mar/2020	19/Mar/2021	Radiation (03CH04-HY)
Horn Antenna	SCHWARZBECK	BBHA9120	BBHA9120D018 34	1 GHz ~ 18 GHz	06/Feb/2020	05/Feb/2021	Radiation (03CH04-HY)
Turn Table	Chaintek	3000	MF7802056	0 ~ 360 degree	NCR	NCR	Radiation (03CH04-HY)
Antenna Mast	MF	MF-7802	MF780208163	1 ~ 4 m	NCR	NCR	Radiation (03CH04-HY)
RF Cable	SUHNER	SUCOFLEX 104	CB001-03CH01	30MHz~18GHz	02/Mar/2020	01/Mar/2021	Radiation (03CH04-HY)
Software	Sporton	SENSE-EMI	V5.10.7	-	NCR	NCR	Radiation (03CH04-HY)

Radiated Emission above 1GHz - Test Date: 24/Jul/2020


NCR: No Calibration Request.

AS/NZS EMI TEST REPORT

Appendix A. Test Photos

1. Photographs of Conducted Emissions Test Configuration

Front View

Side View

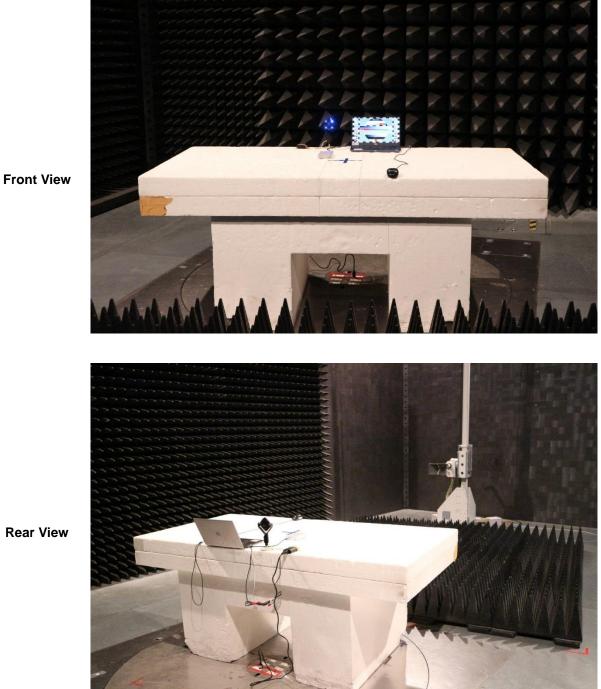
AS/NZS EMI TEST REPORT

Report No. : AI071608-01

Under Table View

2. Photographs of Radiated Emissions Test Configuration

For radiated emissions below 1GHz



Front View

For radiated emissions above 1GHz

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-327-0973