

DECLARE THAT :

The equipment is in accordance with the procedures are given in ANSI C63.4-2014 and the energy emitted by this equipment was Passed by CISPR PUB. 22, FCC Part 15 Subpart B. Radiated and conducted emissions are compliance in Class B limits. The test was carried out on Oct. 07, 2021 at SPORTON INTERNATIONAL INC.

William Li

Hsinhua Laboratory.

SPORTONLAR

SPORTON INTERNATIONAL INC. Hsinhua Laboratory No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan (R.O.C.)

EMI TEST REPORT

Filing Type	:	Supplier's Declaration Of Conformity
Equipment	:	Dual HDMI [™] Video Capture
Brand Name	:	j5create
Model Name	:	JVA06
Applicant	:	KAIJET TECHNOLOGY INTERNATIONAL CORPORATION 8F., No.109, Zhongcheng Rd., Tucheng Dist.,
		New Taipei City 236, Taiwan, R.O.C.
Manufacturer	:	Magic Control Technology Corporation
		10F., No.123, Zhongcheng Rd., Tucheng Dist., New Taipei City 236, Taiwan R.O.C.
Standard		
e saliaal a	•	Subpart B, Class B Digital Device

The product was received on Sep. 22, 2021, and testing was started from Oct. 04, 2021 and completed on Oct. 07, 2021. We, SPORTON INTERNATIONAL INC. Hsinhua Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.4-2014 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. Hsinhua Laboratory, the test report shall not be reproduced except in full.

Approved by: William Li

SDoC by:

SPORTON INTERNATIONAL INC. Hsinhua Laboratory No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan (R.O.C.)

TEL : 886-3-327-3456 FAX : 886-3-327-0973 Report Template No.: HE3-A1_5 Ver3.1 Page Number: 1 of 34Issued Date: Dec. 07, 2021Report Version: 01

Table of Contents

History of this test report	3
Summary of Test Result	4
1. General Description of Equipment under Test	
1.2. Feature of Equipment under Test 1.3. Modification of EUT	
2. Test Configuration of Equipment under Test	
2.1. Details of EUT Test Modes	6
2.2. Description of Test System	
2.3. Connection Diagram of Test System	
2.4. Details of EUT Test Setup	10
3. General Information of Test	
3.1. Test Facilities	
3.2. Test Standards	
3.3. Test Voltage/Frequencies	
3.4. Test Distance and Frequency Range Investigated	
3.5. Operating Condition	
3.6. Labeling requirements	
4. Conducted Emissions Measurement	13
4.1. Limit	
4.2. Test Procedures	
4.3. Measurement Results Calculation	
4.4. Typical Test Setup Layout	15
4.5. Test Result	17
5. Radiated Emissions Measurement	19
5.1. Radiated Emission below 1GHz	
5.2. Radiated Emission above 1GHz	
6. Uncertainty of Test Site	32
6.1. Emission Test Measurement Uncertainty	32
7. List of Measuring Equipment Used	33
Appendix A. Test Photos	

Photographs of EUT v01

History of this test report

Report No.	Version	Description	Issued Date
FD191532-01	01	Initial issue of report	Dec. 07, 2021

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
4	15.107	Conducted Emissions of Powerline	PASS	Under limit 10.07 dB at 0.15 MHz
5.1	15.109	Radiated Emissions below 1GHz	PASS	Under limit 1.81 dB at 148.160 MHz
5.2	15.109	Radiated Emissions above 1GHz	PASS	Under limit 4.69 dB at 1.44 GHz
Note 1: Fro	om Sporton Project No.:FD1	91532.		

Declaration of C	Conformity:
------------------	-------------

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

None

Reviewed by: Mark Ma

Report Producer: Anne Kuo

1. General Description of Equipment under Test

1.1. Basic Description of Equipment under Test

Equipment	:	Dual HDMI [™] Video Capture		
Model No.	:	JVA06		
Power Supply Type	:	From Power Adapter		
AC Power Cord	:	Wall-Mount, 2 pin		
DC Power Cable	:	D-Shielded, 2.0 m		
The maximum operating frequency : 500 MHz				

1.2. Feature of Equipment under Test

	Accessory Information					
Type C to C Cable	Brand Name	N/A	Model Name	N/A		
	Signal Line 0.6 meter, D-shielded cable, without ferrite core					
Type C to A Cable	Brand Name	N/A	Model Name	N/A		
	Signal Line	0.6 meter, D-shielded cable, without ferrite core				
HDMI Cable	HDMI Cable Brand Name		Model Name	N/A		
	Signal Line	1 meter, D-shielded cable, without ferrite core				

For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Modification of EUT

No modifications to the EUT were made.

2. Test Configuration of Equipment under Test

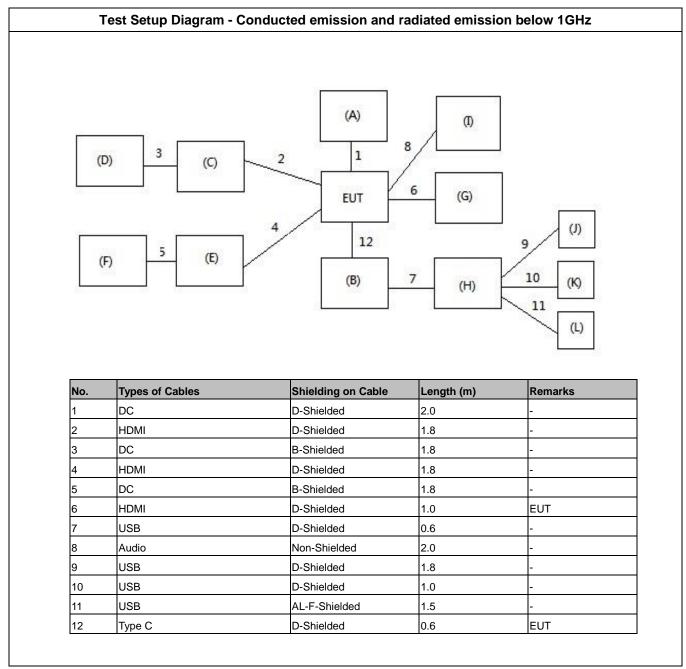
2.1. Details of EUT Test Modes

From the above models, Model: JVA06 was selected as representative model for the test and its data was recorded in this report. The equipment under test were performed the following test modes:

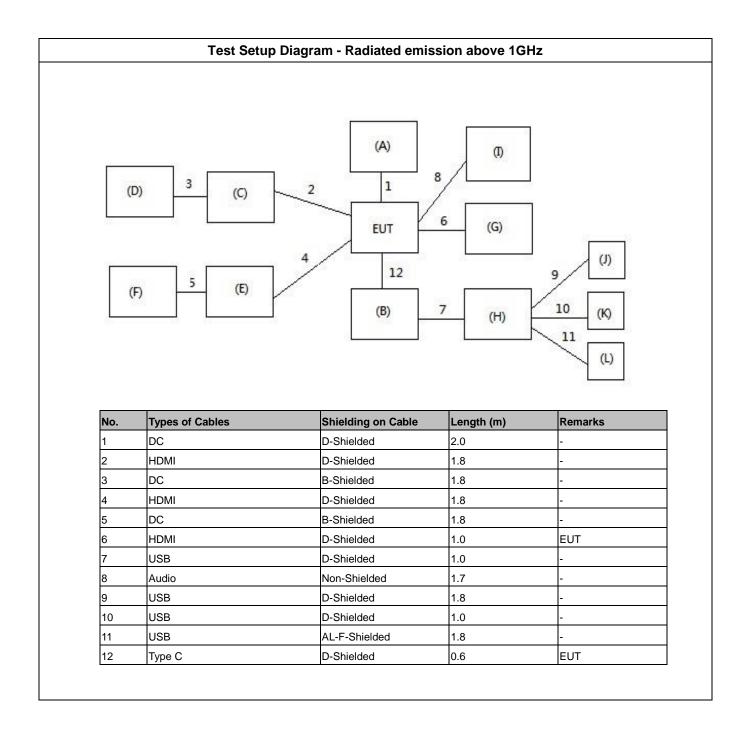
Test Items	Description of test modes
	Mode 1. HDMI1+2 IN 1920*1080 60Hz ,HDMI OUT A:1280*720 60Hz,HDMI
	AUDIO, HEADSET, MIC, TYPE C TO C CABLE
	Mode 2. HDMI1+2 IN 1920*1080 60Hz ,HDMI OUT B:1920*1080 60Hz,HDMI
	AUDIO, HEADSET, MIC, TYPE C TO A CABLE
Conducted	Mode 3. HDMI1+2 IN 1920*1080 60Hz ,HDMI OUT A+B:1280*720 60Hz,HDMI
Emission	
	Mode 4. HDMI1+2 IN 1920*1080 60Hz ,HDMI OUT B+A:1280*720 60Hz,HDMI AUDIO,HEADSET,MIC, TYPE C TO C CABLE
	Mode 5. HDMI1+2 IN :1680*1050 60Hz,HDMI OUT A+B:720*576 60Hz,HDMI
	AUDIO, HEADSET, MIC, HDMI A+B OUT, TYPE C TO C CABLE
	cause "mode 3" generated the worst test result; it was reported as final data.
	Mode 1. HDMI1+2 IN 1920*1080 60Hz ,HDMI OUT A:1280*720 60Hz,HDMI
	AUDIO, HEADSET, MIC, TYPE C TO C CABLE
	Mode 2. HDMI1+2 IN 1920*1080 60Hz ,HDMI OUT B:1920*1080 60Hz,HDMI
	AUDIO, HEADSET, MIC, TYPE C TO A CABLE
Radiated	Mode 3. HDMI1+2 IN 1920*1080 60Hz ,HDMI OUT A+B:1280*720 60Hz,HDMI
Emissions	AUDIO, HEADSET, MIC, TYPE C TO C CABLE
<below 1ghz=""></below>	Mode 4. HDMI1+2 IN 1920*1080 60Hz ,HDMI OUT B+A:1280*720 60Hz,HDMI
	AUDIO,HEADSET,MIC, TYPE C TO C CABLE
	Mode 5. HDMI1+2 IN :1680*1050 60Hz,HDMI OUT A+B:720*576 60Hz,HDMI
	AUDIO,HEADSET,MIC, HDMI A+B OUT, TYPE C TO C CABLE
	cause "mode 3" generated the worst test result; it was reported as final data.
	Mode 1. HDMI1+2 IN 1920*1080 60Hz ,HDMI OUT A:1280*720 60Hz,HDMI
	AUDIO, HEADSET, MIC, TYPE C TO C CABLE
	Mode 2. HDMI1+2 IN 1920*1080 60Hz ,HDMI OUT B:1920*1080 60Hz,HDMI
Dedicted	
Radiated Emissions	Mode 3. HDMI1+2 IN 1920*1080 60Hz ,HDMI OUT A+B:1280*720 60Hz,HDMI
<pre>clinissions <above 1ghz=""></above></pre>	AUDIO,HEADSET,MIC, TYPE C TO C CABLE Mode 4. HDMI1+2 IN 1920*1080 60Hz ,HDMI OUT B+A:1280*720 60Hz,HDMI
	AUDIO, HEADSET, MIC, TYPE C TO C CABLE
	Mode 5. HDMI1+2 IN :1680*1050 60Hz,HDMI OUT A+B:720*576 60Hz,HDMI
	AUDIO, HEADSET, MIC, HDMI A+B OUT, TYPE C TO C CABLE
	cause "mode 3" generated the worst test result; it was reported as final data.
<u> </u>	

2.2. Description of Test System

Conducted emission and radiated emission below 1GHz


No.	Peripheral	Manufacturer	Model Number	FCC ID	Remarks		
For	or Local						
А	Adapter	Apple	A1947	DoC	-		
в	Laptop 1	ASUS	UX392F	DoC	-		
С	Laptop 2	Lenovo	TP00103J	DoC	-		
D	Laptop 2 Adapter	Lenovo	ADLX65YLC3D	DoC	-		
Е	Laptop 3	Lenovo	TP00088C	DoC	-		
F	Laptop 3 Adapter	Lenovo	ADLX65YLC3A	DoC	-		
G	LCD Monitor	DELL	UltraSharp U2410f	DoC	-		
н	USB HUB	j5 create	JUH340	DoC	-		
Ι	Headset	i-Acon	HOH-323-BK	N/A	-		
J	Printer	Fuji Xerox	Phaser 3121	DoC	-		
к	HDD	PQI	H566	DoC	-		
L	Mouse	ASUS	MOBTUO	DoC	-		

Radiated emission above 1GHz


No.	Peripheral	Manufacturer	Model Number	FCC ID	Remarks		
For	for Local						
А	Adapter	Apple	A1947	DoC	-		
в	Laptop 1	ASUS	UX392F	DoC	-		
С	Laptop 2	ASUS	FA506I	DoC	-		
D	Laptop 2 Adapter	ASUS	A18-150P1A	N/A	-		
Е	Laptop 3	Lenovo	TP00088C	DoC	-		
F	Laptop 3 Adapter	Lenovo	ADLX65YLC3A	DoC	-		
G	LCD Monitor	DELL	UltraSharp U2410f	DoC	-		
н	USB HUB	j5 create	JCH377	DoC	-		
Ι	Headset	HAWK	03-MSB301	N/A	-		
J	Printer	EPSON	C61	N/A	-		
К	HDD	PQI	H566	DoC	-		
L	Mouse	Microsoft	1113	DoC	-		

2.3. Connection Diagram of Test System

2.4. Details of EUT Test Setup

During the test, the following program under WIN 10 was executed

- The Laptop executed "BurnInTest" to display the "H" pattern on the screen by EUT.
- The Laptop executed "BurnInTest" to keeps read and write data from Portable External HDD.
- The Laptop executed "Word" sends "H" messages to the printer, and then the printer prints them on the paper.
- The Laptop executed "Media player" to continuous audio playback from screen speakers/headset via EUT.
- The Laptop executed "OBS Studio" and receives audio from the microphone via the EUT..

3. General Information of Test

3.1. Test Facilities

Test	Test Lab : Sporton International Inc. Hsinhua Laboratory							
		ADD : No.52	ADD : No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan (R.O.C.)					
\boxtimes		TEL : 886-3-	327-3456		FAX : 886-3-327-0973			
	Hsinhua	FCC Designation	ation Number:	TW1129				
	(TAF: 3785)	ADD : No.3,	Ln. 238, Kang	le St., Neihu Di	st., Taipei City 1	14040, Taiwan (R.O.C.)	
\boxtimes		TEL : 886-2-2631-5551			FAX : 886-2-2631-9740			
		FCC Designation Number: TW1133						
		Test Site	Test	Test Environment				
Test Items		No.	Engineer	temp °C	humidity %	Test Date	Remark	
Powe Emis	erline Conducted sions	CO01-NH	Willy Lee	25.8~25.9	47~48	06/Oct/2021	-	
	ated Emissions w 1GHz)	OS03-NH	Louis Lin	27.6~27.7	56.5~56.7	05/Oct/2021	_	
	ated Emissions ve 1GHz)	03CH04-HY	Yen-Liang Ou	25.5~26.5	56~57	07/Oct/2021	-	

3.2. Test Standards

Test items	Test Standards and Test Procedures
Radiated and Conducted	ANSI C63.4:2014 with FCC Method 47 CFR Part 15, Subpart B, Class B Digital
Emissions	Device, CISPR PUB. 22

3.3. Test Voltage/Frequencies

Power Supply Type	Voltage/Frequencies
Power Adapter	120V / 60Hz

3.4. Test Distance and Frequency Range Investigated

Test Items	Frequency Range	Remark
Powerline Conducted Emissions	150 kHz to 30 MHz	-
Radiated Emissions (below 1GHz)	30 MHz to 1,000 MHz	Measurement distance is 10 m.
Dedicted Emissions (shows 10Hz)	1,000 MHz to 18,000 MHz	Measurement distance is 3 m.
Radiated Emissions (above 1GHz)	Above 18,000 MHz	Measurement distance is 1 m.

3.5. Operating Condition

• Full system.

3.6. Labelling requirements

The devices shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

3.7. User Information

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

-Reorient or relocate the receiving antenna.

- -Increase the separation between the equipment and receiver.
- -Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -Consult the dealer or an experienced radio/TV technician for help.

For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense

4. Conducted Emissions Measurement

Conducted Emissions were measured according to the methods defined in ANSI C63.4-2014 Section 7. The EUT is which satisfies the Class B disturbance limits.

4.1. Limit

Frequency range MHz	Coupling device	Detector type / bandwidth	Class A limits dB(µV)
0,15 – 0,5	ΔΛΛΝΙ		79
0,50 – 30	AMN	Quasi-peak / 9 kHz	73
0,15 – 0,5	0.N.A.N.I		66
0,50 - 30	AMN	Average / 9 kHz	60
Note 1: The lower limit shal	I apply at the transition frequ	Jency.	
Limits for conducted dist	urbance at the mains port	s of class B	
Frequency range MHz	Coupling device	Detector type / bandwidth	Class B limits dB(µV)
0,15 – 0,5			66 - 56
0,5 – 5	AMN	Quasi-peak / 9 kHz	56
5 – 30			60
0,15 – 0,5			56 - 46
0,5 – 5	AMN	Average / 9 kHz	46
5 – 30		Γ	50

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

4.2. Test Procedures

Tabletop equipment:

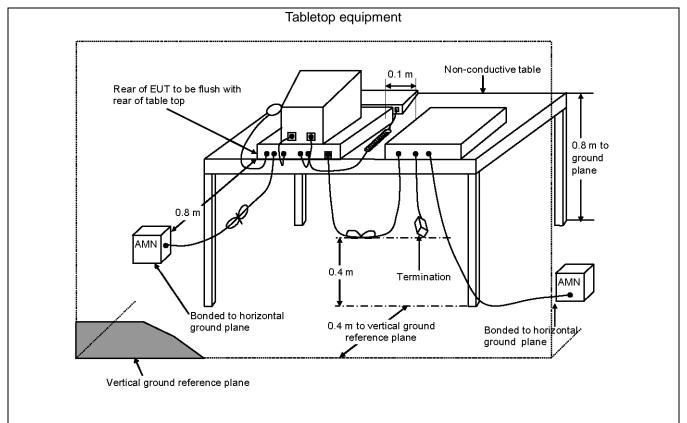
- a). The EUT was warmed up for 15 minutes before testing started.
- b). The EUT was placed on a desk 0.8 meter height from the metal ground plane and 0.4 meter from the conducting wall of the shielding room and it was kept at least 0.8 meter from any other grounded conducting surface.
- c). Connect EUT to the power mains through a line impedance stabilization network (LISN).
- d). All the support units are connect to the other LISN.
- e). The LISN provides 50 ohm, coupling impedance for the measuring instrument.
- f). The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- g). Both sides of AC line were checked for maximum conducted interference.
- h). The frequency range from 150 kHz to 30 MHz was searched.
- i). Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- j). All emissions not reported here are more than 10 dB below the prescribed limit.

Floor-standing equipment:

- a). The EUT was warmed up for 15 minutes before testing started.
- b). The EUT was placed on the horizontal ground reference plane, 12mm above ground.
- c). Connect EUT to the power mains through a line impedance stabilization network (LISN).
- d). All the support units are connect to the other LISN.
- e). The LISN provides 50 ohm, coupling impedance for the measuring instrument.
- f). The CISPR states that a 50 ohm, 50 microhenry LISN should be used.
- g). Both sides of AC line were checked for maximum conducted interference.
- h). The frequency range from 150 kHz to 30 MHz was searched.
- i). Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- j). All emissions not reported here are more than 10 dB below the prescribed limit.

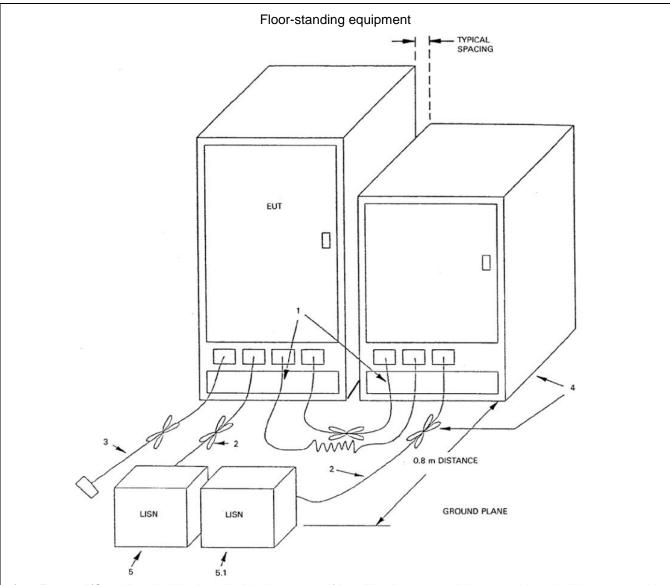
4.3. Measurement Results Calculation

The measured Level is calculated using:


Corrected Reading (dB μ V) = LISN Factor + Cable Loss + Read Level

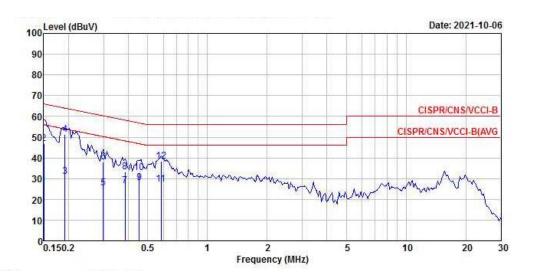
For example at 0.3 MHz if the LISN Factor is 10.48 dB, the cable loss is 0.10 dB, the measured voltage is 36.39 dB μ V, the signal strength would be calculated:

Corrected Reading $(dB\mu V) = 10.48 dB + 0.10 dB + 36.39 dB\mu V = 46.97 dB\mu V$



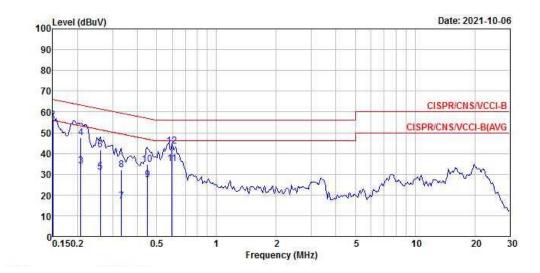
4.4. Typical Test Setup Layout

- a). AMN is 80 cm from the EUT and at least 80 cm from other units and other metal planes.
- b). EUT is connected to one artificial mains network (AMN).
- c). All other units of a system are powered from a second AMN. A multiple outlet strip can be used for multiple mains cords.
- d). Rear of EUT to be flushed with rear of table top.
- e). Peripherals shall be placed at a distance of 10 cm from each other and from the controller, except for the monitor which, if this is an acceptable installation practice, shall be placed directly on the top of the controller.
- f). If cables, which hang closer than 40 cm to the horizontal metal ground plane, cannot be shortened to appropriate length, the excess shall be folded back and forth forming a bundle 30 cm to 40 cm long.
- g). Mains cords and signal cables shall be positioned for their entire lengths, as far as possible, at 40 cm from the vertical reference plane.
- h). Cables of hand operated devices, such as keyboards, mice, etc. shall be placed as for normal usage.


- a). Excess I/O cables shall be bundled in the center. If bundling is not possible, the cables shall be arranged in a serpentine fashion. Bundling shall not exceed 40 cm in length.
- b). Excess power cords shall be bundled in the center or shortened to appropriate length.
- c). I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. If bundling is not possible, the cable shall be arranged in a serpentine fashion.
- d). EUT and all cables shall be insulated, if required, from the ground plane by up to 12 mm of insulating material.
- e). EUT connected to one LISN. LISN can be placed on top of, or immediately beneath, the ground plane. 5.1 All other equipment powered from a second LISN or additional LISN(s).
 - 5.2 A multiple outlet strip can be used for multiple power cords of non-EUT equipment.

4.5. Test Result

Test Mode	Mode 3								
Test Frequency	0.15 MHz ~ 30 MHz	Test Voltage	AC 120V / 60Hz						
■ The test was pas	■ The test was passed at the minimum margin that marked by the frame in the following data								


Line

		Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
		MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1		0.15	27.54	-28.46	56.00	17.15	10.29	0.10	Average
23		0.15	46.88	-19.12	66.00	36.49	10.29	0.10	QP
3		0.19	31.17	-22.79	53.96	20.79	10.28	0.10	Average
4	@	0.19	51.45	-12.51	63.96	41.07	10.28	0.10	QP
5 6		0.30	25.46	-24.81	50.27	15.08	10.27	0.11	Average
6		0.30	38.07	-22.20	60.27	27.69	10.27	0.11	QP
7		0.39	26.66	-21.51	48.17	16.28	10.27	0.11	Average
8		0.39	33.11	-25.06	58.17	22.73	10.27	0.11	QP
9		0.45	27.88	-18.92	46.80	17.50	10.27	0.11	Average
10		0.45	32.95	-23.85	56.80	22.57	10.27	0.11	QP
11		0.59	27.27	-18.73	46.00	16.88	10.27	0.12	Average
12		0.59	38.31	-17.69	56.00	27.92	10.27	0.12	QP

Neutral

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
8	MHz	dBuV	dB	dBuV	dBuV	dB	dB	1 <u>. 1</u> 2
1	0.15	35.68	-20.32	56.00	25.28	10.30	0.10	Average
2 @	0.15	55.93	-10.07	66.00	45.53	10.30	0.10	QP
3	0.21	33.99	-19.29	53.28	23.60	10.29	0.10	Average
4	0.21	47.77	-15.51	63.28	37.38	10.29	0.10	QP
5	0.26	31.05	-20.37	51.42	20.66	10.29	0.10	Average
6	0.26	41.52	-19.90	61.42	31.13	10.29	0.10	QP
7	0.33	17.03	-32.37	49.40	6.64	10.28	0.11	Average
8	0.33	32.21	-27.19	59.40	21.82	10.28	0.11	QP
9	0.45	27.45	-19.42	46.87	17.06	10.28	0.11	Average
10	0.45	34.56	-22.31	56.87	24.17	10.28	0.11	QP
11	0.60	34.94	-11.06	46.00	24.54	10.28	0.12	Average
12	0.60	43.70	-12.30	56.00	33.30	10.28	0.12	

5. Radiated Emissions Measurement

Radiated Emissions were measured according to the methods defined in ANSI C63.4-2014 Section 8. The EUT is which satisfies the Class B disturbance limits.

5.1. Radiated Emission below 1GHz

5.1.1.Limit

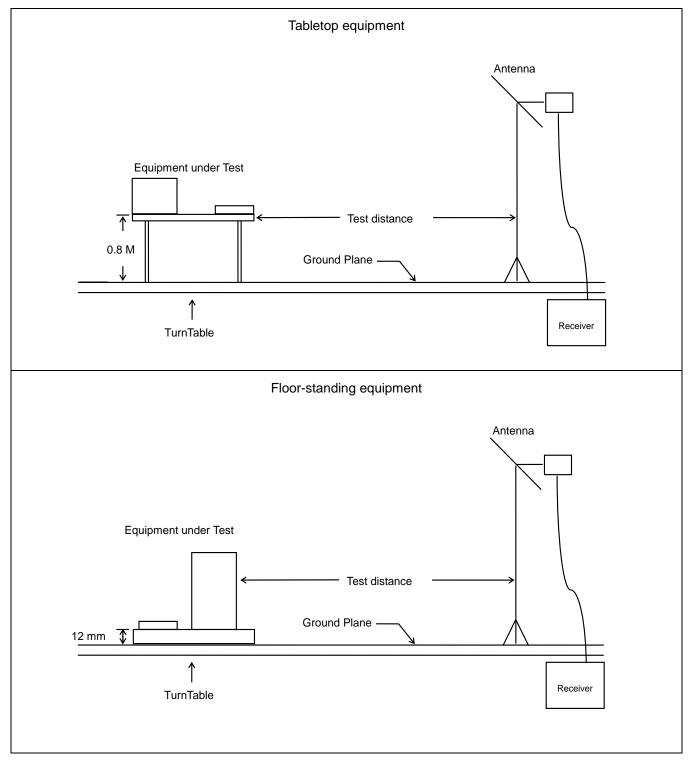
radiated emissions at freque	radiated emissions at frequencies up to 1 GHz for Class A equipment								
Eroquonov rongo	Me	asurement	Class A limits						
Frequency range MHz	Distance (m)	Detector type / bandwidth	dB(µV/m)						
30 – 230	10	Quasi Peak /	40						
230 – 1000	10	120 kHz	47						
radiated emissions at freque	ncies up to 1 GHz	for Class B equipment							
	Me	asurement	Class B limits						
Frequency range MHz	Distance (m)	Detector type / bandwidth	dB(µV/m)						
30 – 230	10	Quasi Peak /	30						
230 – 1000	10	120 kHz	37						

5.1.2. Test Procedures

Tabletop equipment:

- a). The EUT was placed on a rotatable table top 0.8 meter above ground.
- b). The EUT was set 10 meters from the interference-receiving antenna which was mounted on the top of a variable height antenna tower.
- c). The table was rotated 360 degrees to determine the position of the highest radiation.
- d). The antenna is a half wave dipole and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e). For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f). Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g). If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- h). The FCC Part 15.109(g) permit parties seeking to authorize a digital device to choose to demonstrate that the device complies with either the Part 15 standards or the international standards found in Publication 22 of the International Special Committee on Radio Interference (CISPR).
- i). If the EUT is having a Wireless modular, can choose to install the filter at the input connector of test-receiver system.

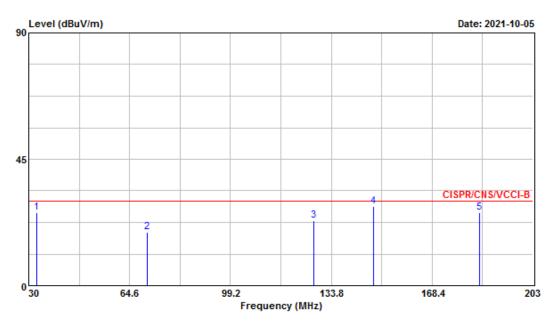
Floor-standing equipment:


- a). The EUT was placed on the horizontal ground reference plane, 12 mm above ground.
- b). The EUT was set 10 meters from the interference-receiving antenna which was mounted on the top of a variable height antenna tower.
- c). The table was rotated 360 degrees to determine the position of the highest radiation.
- d). The antenna is a half wave dipole and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e). For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f). Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g). If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- h). The FCC Part 15.109(g) permit parties seeking to authorize a digital device to choose to demonstrate that the device complies with either the Part 15 standards or the international standards found in Publication 22 of the International Special Committee on Radio Interference (CISPR).
- i). If the EUT is having a Wireless modular, can choose to install the filter at the input connector of test-receiver system.

5.1.3. Measurement Results Calculation

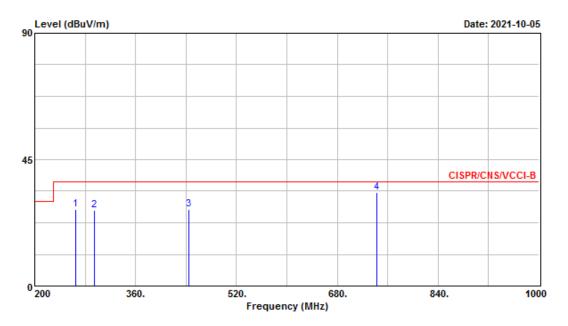
The measured Level is calculated using: Corrected Reading (dB μ V/m) = Antenna Factor + Cable Loss + Read Level – Preamp Factor For example at 125 MHz if the Antenna Factor is 17.24 dB/m, the cable loss is 1.20 dB, the measured voltage is 35.80 dB μ V and the Preamp Factor is 27.18 dB, the signal strength would be calculated: Corrected Reading (dB μ V/m) = 17.24 dB/m + 1.20 dB + 35.80 dB μ V - 27.18 dB = 27.06 dB μ V/m Note: If a hybrid antenna is used, the antenna factor shall be the sum of the Antenna Factor + Attenuator Factor.

5.1.4. Typical Test Setup Layout

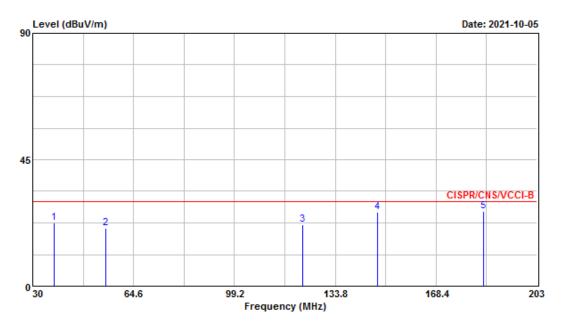

Page Number	: 21 of 34
Issued Date	: Dec. 07, 2021
Report Version	: 01

5.1.5. Test Result

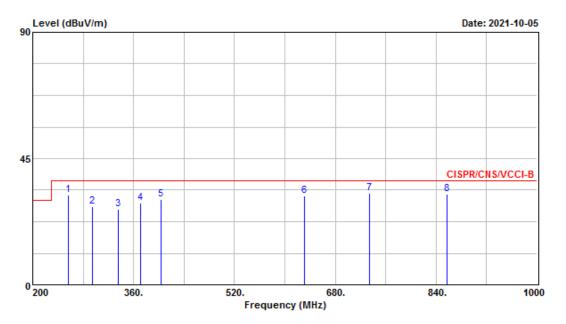
Test mode	Mode 3		
Test frequency	30 MHz ~ 1000 MHz	Test Voltage	AC 120V / 60Hz
■ The test was pas	sed at the minimum margin that marke	d by the frame in the fol	lowing data


Vertical

		Freq	Level		Limit Line				-		Ant Pos	Table Pos
	_	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	deg
1		32.770	25.93	-4.07	30.00	31.86	21.58	0.96	28.47	Peak		
2		70.660	19.16	-10.84	30.00	34.51	11.56	1.52	28.43	Peak		
3		127.920	23.20	-6.80	30.00	31.80	17.60	2.08	28.28	Peak		
4	6	148.160	28.19	-1.81	30.00	38.19	15.92	2.29	28.21	QP	100	185
5		184.660	26.14	-3.86	30.00	37.19	14.49	2.54	28.08	Peak		


Vertical

	Freq	Level				Antenna Factor		-	Remark	Ant Pos	Table Pos
		dBuV/m		dBuV/m			dB	dB		cm	deg
1	264.800	27.26	-9.74	37.00	33.26	18.57	3.23	27.80	Peak		
2	295.200	26.85	-10.15	37.00	33.08	18.32	3.29	27.84	Peak		
3	444.800	27.24	-9.76	37.00	30.05	21.86	4.18	28.85	Peak		
4	742.400	33.22	-3.78	37.00	31.72	24.63	5.94	29.07	Peak		


Horizontal

	Freq	Level				Antenna Factor		-		Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	deg
1	37.270	22.62	-7.38	30.00	30.67	19.38	1.04	28.47	Peak		
2	55.090	20.73	-9.27	30.00	35.62	12.17	1.40	28.46	Peak		
3	122.560	21.87	-8.13	30.00	30.28	17.87	2.02	28.30	Peak		
4	148.160	26.19	-3.81	30.00	36.19	15.92	2.29	28.21	QP		
5 0	184.660	26.75	-3.25	30.00	37.80	14.49	2.54	28.08	QP		

Horizontal

	Freq	Level	Over Limit	Limit Line		Antenna Factor		-		Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	deg
1	256.000	32.13	-4.87	37.00	38.57	18.15	3.21	27.80	Peak		
2	295.200	27.91	-9.09	37.00	34.14	18.32	3.29	27.84	Peak		
3	336.000	26.80	-10.20	37.00	31.97	19.06	3.80	28.03	Peak		
4	371.200	29.13	-7.87	37.00	33.48	19.94	4.00	28.29	Peak		
5	404.000	30.30	-6.70	37.00	33.71	21.13	4.02	28.56	Peak		
6	630.400	31.82	-5.18	37.00	31.55	23.96	5.48	29.17	Peak		
7	733.600	32.55	-4.45	37.00	31.25	24.52	5.87	29.09	Peak		
8	857.600	32.22	-4.78	37.00	28.79	25.54	6.73	28.84	Peak		

5.2. Radiated Emission above 1GHz

The EUT is which satisfies the Class B disturbance limits.

5.2.1. Limit

radiated emissions at frequencies above 1 GHz for Class A equipment								
Frequency range	Me	asurement	Class A limits					
GHz	Distance (m)	Detector type / bandwidth	dB(µV/m)					
1 – 18	3	Average / 1 MHz	60					
1 – 18	3	Peak / 1 MHz	80					
18 – 40	1	Average / 1 MHz	69.54					
18 – 40		Peak / 1 MHz	89.54					
radiated emissions at freque	ncies above 1 GHz	for Class B equipment						
Frequency range	_	asurement	Class B limits					
GHz	Distance (m)	Detector type / bandwidth	dB(µV/m)					
1 – 18	3	Average / 1 MHz	54					
1 – 18	5	Peak / 1 MHz	74					
18 – 40	1	Average / 1 MHz	63.54					
18 – 40	•	Peak / 1 MHz	83.54					
 Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements). Remark: It should be noted that the field strength is inversely proportional to distance, so the field strength at 3m is 1/3 the strength at 1m, i.e. L3m/Lx = X/3. Ex. L3m dB-Lx dB = 20log(3/x); L1m dB = 60 + 20log (3/1) = 69.54 dB(µV/m) Ex. L3m dB-Lx dB = 20log(3/x); L1m dB = 54 + 20log (3/1) = 63.54 dB(µV/m) 								
			·					
Required highest frequency								
Highest internal (<i>F</i> _x)	trequency	Highest	measured frequency					

(<i>F</i> _x)	
<i>F</i> _x ≤ 108 MHz	1 GHz
108 MHz < <i>F</i> _x ≤ 500 MHz	2 GHz
500 MHz < <i>F</i> _x ≤ 1 GHz	5 GHz
<i>F</i> _x > 1 GHz	5 x F_x up to a maximum of 40 GHz

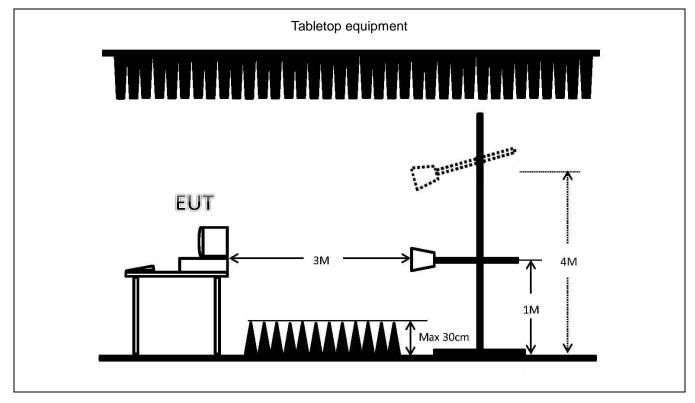
5.2.2. Test Procedures

Tabletop equipment:

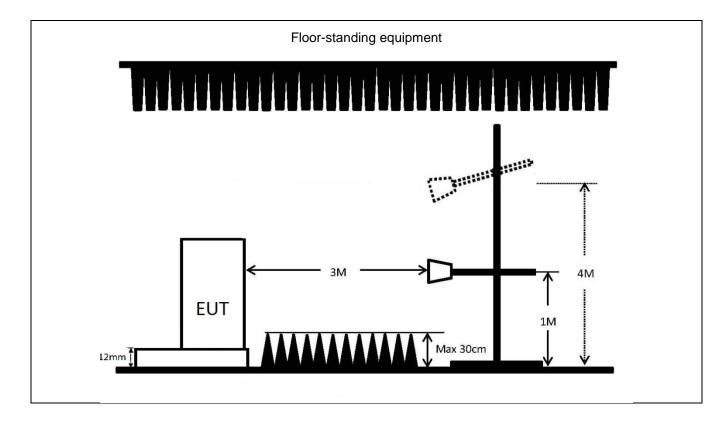
- a). Same test set up as below 1GHz radiated testing.
- b). The EUT was set 3m (1 18GHz) / 1m (18 40GHz) from the interference-receiving antenna which was mounted on the top of a variable height antenna tower.
- c). There should be absorber placed between the EUT and Antenna and its located size should let the test site meet CISPR16-1-4 requirement.
- d). The table was rotated 360 degrees to determine the position of the highest radiation.
- e). The measured using a test-receiver system with both a peak and CISPR average detector.
- f). If the EUT is having a Wireless or Bluetooth modular, can choose to install the filter at the input connector of test-receiver system.
- g). Set the DRG Horn Antenna at 1M height, then run the turn table to get the maximum noise reading from Horizontal and Vertical polarity separately the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- h). When EUT locating on the turn-table, and its height is over 172cm (Antenna's 3dB beam width of 6GHz is 27°), the DRG Horn Antenna must be raised up and descended down, while keeping the antenna in the cone of radiation from that area and pointed at the area both in azimuth and elevation, then turning around the turn-table to get the maximum noise reading of the Horizontal and Vertical polarity separately.
- i). If emission level of the EUT in peak mode was 23dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Floor-standing equipment:

- a). Same test set up as below 1GHz radiated testing.
- b). The EUT was set 3m (1 18GHz) / 1m (18 40GHz) from the interference-receiving antenna which was mounted on the top of a variable height antenna tower.
- c). There should be absorber placed between the EUT and Antenna and its located size should let the test site meet CISPR16-1-4 requirement.
- d). The table was rotated 360 degrees to determine the position of the highest radiation.
- e). The measured using a test-receiver system with both a peak and CISPR average detector.
- f). If the EUT is having a Wireless or Bluetooth modular, can choose to install the filter at the input connector of test-receiver system.
- g). Set the DRG Horn Antenna at 1M height, then run the turn table to get the maximum noise reading from Horizontal and Vertical polarity separately the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- h). When EUT locating on the turn-table, and its height is over 172cm (Antenna's 3dB beam width of 6GHz is 27°), the DRG Horn Antenna must be raised up and descended down, while keeping the antenna in the cone of radiation from that area and pointed at the area both in azimuth and elevation, then turning around the turn-table to get the maximum noise reading of the Horizontal and Vertical polarity separately.
- i). If emission level of the EUT in peak mode was 23dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

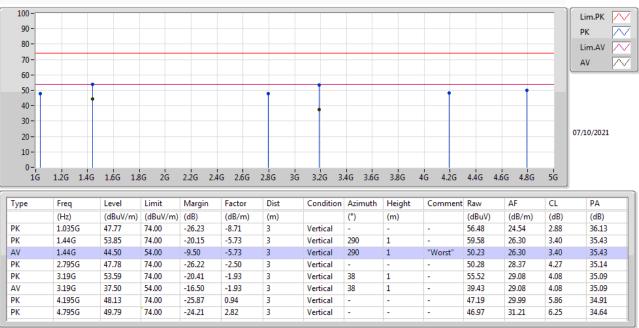


5.2.3. Measurement Results Calculation


The measured Level is calculated using:

Corrected Reading (dB μ V/m) = Raw(Read Level)+AF(Antenna Factor)+CL(Cable Loss)-PA(Preamp Factor) For example at 1980 MHz if the Antenna Factor is 26.19 dB/m, the cable loss is 4.08 dB, the measured voltage is 51.30 dB μ V and the Preamp Factor is 33.34 dB, the signal strength would be calculated: Corrected Reading (dB μ V/m) = 51.30 dB μ V + 26.19 dB/m + 4.08 dB - 33.34 dB = 48.23 dB μ V/m Note: If a Band reject filter is used, this factor will be added to the sum of the factors.

5.2.4. Typical Test Setup Layout



5.2.5. Test Result

Test mode	Mode 3						
Test frequency	Above 1GHz	Test Voltage	AC 120V / 60Hz				
The test was passed at the minimum margin that marked by the frame in the following data							


Vertical

Mode 3

Horizontal

6. Uncertainty of Test Site

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2).

6.1. Emission Test Measurement Uncertainty

Test Items	Test Site No.	ULAB	
Conducted Emissions	CO01-NH	2.66 dB	
Radiated Emissions below 1GHz	OS03-NH	5.07 dB	
Radiated Emissions above 1GHz	03CH04-HY	3.53 dB	

7. List of Measuring Equipment Used

Conducted Emission - Test Date: 06/Oct/2021

Instrument	Manufacturer/ Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
EMI Receiver	R&S	ESR	102318	9kHz - 3.6 GHz	26/Jul/2021	25/Jul/2022	Conduction (CO01-NH)
LISN	SCHAFFNER	NNB41	06/10024	9kHz - 30MHz	28/Dec/2020	27/Dec/2021	Conduction (CO01-NH)
LISN (Support Unit)	MessTec	NNB-2/16Z	99079	9kHz - 30MHz	03/Feb/2021	02/Feb/2022	Conduction (CO01-NH)
Power Filter	CORCOM	MR12030	N/A	30A*2	NCR	NCR	Conduction (CO01-NH)
RF Cable-CON	Suhner Switzerland	RG223/U	CB004	9kHz - 30MHz	25/Dec/2020	24/Dec/2021	Conduction (CO01-NH)
software	Audix	E3	6.12160806	-	NCR	NCR	Conduction (CO01-NH)

NCR: No Calibration Required

Radiated Emission below 1GHz - Test Date: 05/Oct/2021

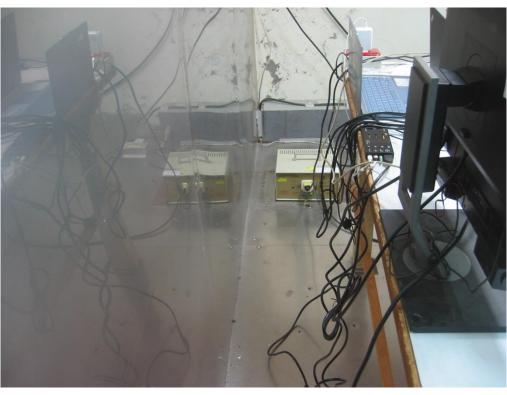
Instrument	Manufacturer/ Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
Open Area Test Site	SPORTON	OATS-10	OS03-NH	30 MHz - 1 GHz 10m, 3m	20/Oct/2020	19/Oct/2021	Radiation (OS03-NH)
Amplifier	HP	8447D	2944A08292	0.1 MHz - 1.3 GHz	02/Jul/2021	01/Jul/2022	Radiation (OS03-NH)
Spectrum Analyzer	R&S	FSP7	838858/038	9 kHz - 7GHz	21/Jun/2021	20/Jun/2022	Radiation (OS03-NH)
Receiver	R&S	ESCS30	100357	9 kHz – 2.75 GHz	07/May/2021	06/May/2022	Radiation (OS03-NH)
Bilog Antenna With 5dB Attenuator	CHASE	CBL6112D	25234	30 MHz - 2 GHz	24/Apr/2021	23/Apr/2022	Radiation (OS03-NH)
Turn Table	EMCO	2080	9805-2065	0 - 360 degree	NCR	NCR	Radiation (OS03-NH)
Antenna Mast	EMCO	2075	9804-2151	1 m - 4 m	NCR	NCR	Radiation (OS03-NH)
RF Cable-R10m	HSCN	RG213U	2X11N	30 MHz - 1 GHz	13/Jul/2021	12/Jul/2022	Radiation (OS03-NH)
Software	Audix	E3	Ver.4	-	NCR	NCR	Radiation (OS03-NH)

NCR: No Calibration Required

Instrument	Manufacturer/ Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
EMI Test Receiver	R&S	ESU-26	100422	20Hz ~ 26.5GHz	03/Nov/2020	02/Nov/2021	Radiation (03CH04-HY)
3m Semi Anechoic Chamber (Site V.S.W.R)	RIKEN	3m SAC	03CH04-HY	1 GHz ~ 18 GHz 3m	19/Feb/2021	18/Feb/2022	Radiation (03CH04-HY)
Microwave Preamplifier	Agilent	8449B	3008A02602	1GHz~26.5GHz	19/Mar/2021	18/Mar/2022	Radiation (03CH04-HY)
Horn Antenna	SCHWARZBECK	BBHA9120	BBHA9120D018 34	1 GHz ~ 18 GHz	23/Feb/2021	22/Feb/2022	Radiation (03CH04-HY)
RF Cable	SUHNER	SUCOFLEX 104	CB001-03CH01	30MHz~18GHz	25/Feb/2021	24/Feb/2022	Radiation (03CH04-HY)
Turn Table	Chaintek	3000	MF7802056	0 ~ 360 degree	NCR	NCR	Radiation (03CH04-HY)
Antenna Mast	MF	MF-7802	MF780208163	1 ~ 4 m	NCR	NCR	Radiation (03CH04-HY)
Software	Sporton	SENSE-EMI	V5.10.7	-	NCR	NCR	Radiation (03CH04-HY)

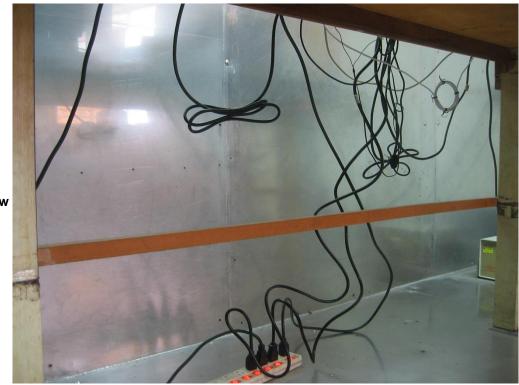
Radiated Emission above 1GHz - Test Date: 07/Oct/2021

NCR: No Calibration Required



Appendix A. Test Photos

1. Photographs of Conducted Emissions Test Configuration


Front View

Side View

EMI TEST REPORT

Under Table View

EMI TEST REPORT

2. Photographs of Radiated Emissions Test Configuration For radiated emissions below 1GHz

Front View

Rear View

: A3 of A4

For radiated emissions above 1GHz

Front View

Rear View

SPORTON INTERNATIONAL INC.